腕時計とそれを取りまく世界 Since Apr 2012

Tag クオーツ

機械式時計はなぜ動くのか その19

ビッグニュースが飛びこんできた。ゼニスのデファイ・ラボである。なんと15Hz(振動数でいえば30振動)という高周波で動作し、その精度はおおよそ10倍だという。15Hzというのは、いままで高振動とされてきたエルプリメロの10振動(5Hz)の3倍もの速度である。しかもそれが機械式で動作するというのだからすごい。 やはりこのメカニズムについても考察を加えなければいけないであろう。 例によってQ値と精度の関係から予測したい。10倍の精度をもたらすためには Q値もおおよそ10倍である必要があった(機械式時計はなぜ動くのか その14))。この時計の周波数は通常4Hz(8振動)とされている時計のおおよそ4倍の速度である。たしかに周波数が高いことは精度向上に寄与する。しかしながらクォーツ時計の発振周波数は機械式時計の1万倍もの速さであるが、Q値として比較すると10倍~100倍のオーダーでしかなかった。 ところがこのデファイ・ラボ、10倍の精度を4倍の発振周波数で達成するという。ということは、これは従来の機械式時計の仕組みではなく、新しいシステムに分類されるということになるだろう。C.O.S.Cクロノメータ規格が-4~+6秒であるから、この10倍の精度を達成するとすると、日差+-0.5秒程度、一ヶ月でも15秒程度である。つまり、通常のクォーツ時計と同等の精度が期待できる新しい機械式腕時計のシステムが誕生したということになりそうだ。 どのようにしてこれを実現したのか。半導体/MEMS技術である。シリコンの単結晶をクリーンルームで結晶成長させ、好みの形に仕上げる。この技術は、例えばDLPを使ったプロジェクターなど、実は広く身近で使われている技術の一つである。いかにもギイ・セモン氏らしい目のつけどころだ。タグ・ホイヤーの技術顧問だった時代の彼の話を聞いたことがあるが、彼は現状の時計業界に大きな不満を持っていた。曰く「機械式時計のシステムは古すぎる。新しい技術がほとんど導入されていない。航空宇宙技術などの進展は著しいのに機械式時計の世界は100年前の技術を使い続けている」。その言葉通り、タグ・ホイヤーの技術顧問だった時代、彼はベルト駆動のモナコV4、振動子としてヒゲゼンマイの代りに永久磁石を使用したペンデュラムなどの開発をリードしてきた。今回のデファイ・ラボは、いままで彼が開発してきた製品の中では、もっとも古い安定した機械式時計のシステムに近いシステムといっていいのではないだろうか。 今後少しの間、このキャリバーを見ていくことにしたい。以下がこの革新的なキャリバー Zenith ZO342についてのwatch.tvによる解説ビデオである。  

機械式時計はなぜ動くのか その11

トルクに関して理解が進んだところで、次に進めていきたいのは、精度保証の仕組み、テンプの動きについてである。一般に、クオーツ時計は、原発振周波数が高いから機械式時計よりも精度が良いとよく言われる。本当にそうなのだろうか。まずここからはじめてみたい。 筆者はかつて、機械式時計はなぜ動くのか その1にて、 32KHzと 5Hz、6400倍もの差がありながら、クオーツおよび機械式時計の精度の差はおおよそ数十倍程度です。 と書いた。 たしかにクオーツ時計は精度が良いが、発振周波数の差と精度の差とを比較すると、発振周波数の差に比較して、機械式時計の精度は良すぎるように思えてしまう。 きちんと作られた機械式時計は、きちんと整備をすると、数十年前の時計でも日常使いできる精度で動作する。機械式時計の仕組みとは、実に、驚くほど完成された仕組みなのではないだろうか。 写真は、整備から上がったばかりのセイコー社のヴィンテージ時計、ロードマーベルである。防水が期待できないこの当時の時計を、この暑い最中、普通に着用して仕事で使っているが、日差+3秒、パワーリザーブ48時間で快適に時を刻み続けている。

機械式時計はなぜ動くのか その10

トルクに関してまとめよう。 そもそも、機械式時計はなぜトルクが大きくなければならないか。それは機械式時計が、その精度をテンプに頼っているからである。機械式時計の場合、主ゼンマイのトルクで最終的にはテンプまで回転させなければいけない。主ゼンマイの周波数(6時間で一回転)から2.5Hzまで増速する場合、54000倍もの増速である。この場合、テンプを回転させるために必要なトルクは、元の主ゼンマイのトルクに対して1/54000以下に減少する。そのトルクである程度の重さを持つテンプを回転させるのであるから、相当のトルクが主ゼンマイには必要となる。表示のための分針と時針とは、その主ゼンマイの回転数に近いところから動力をとっているから、テンプを回すトルクの数千倍のトルクを利用できる。その結果、相当程度に太くて重い視認性のよい針を回転させることができる。しかしながら、いくら機械式時計といっても秒針は細くて軽い。これはトルクが減少した歯車から動力をとらざるをえないからである。 一方で、クオーツ時計の精度は、水晶体の原発振周波数の精度による。液晶でもLEDでも好きな表示形態を選ぶことができる。トルクが必要になるのはアナログ表示、針を回転させたい場合のみとなる。発振周波数の伝達は電気信号で行なわれ、歯車が不要であるため、トルクの増大、減少といったことはない。さらには針を駆動する歯車比に関しても、機械式時計のような制約はない。電気信号で一回、一秒の振動数を作ってから減速して作るのが一般的な構造となるが、減速、増速は好きなように選ぶことができる。モーターの消費電力からくる制約さえ改善されればクオーツ時計のトルクが改善される余地は十分にあるといえるだろう。

機械式時計はなぜ動くのか その9

一般に、機械式のトルクは大きいから太い針を駆動でき、結果的に視認性が良くなる、クオーツのトルクは小さいから針も細くなり、結果的に視認性が悪くなる、とよく言われる。この一般的な前提をもう一度検証してみたい。 一体全体、アナログクオーツ時計のトルクは本当に小さいのだろうか。Tictacでもザ・クロックハウスでもよいがカジュアルな時計店に行ってみると一見太い針に見えるデザインのクオーツ時計が所狭しと並んでいる。これでクオーツはトルクが小さいから針が細いと機械式時計の趣味の人に強弁されても、ちょっと納得できかねるのではないだろうか。写真は Casio社の G-shockの新製品である。十分以上太い針を駆動できているように思えてしまう。 アナログクオーツ時計の針を駆動するための駆動力に対する一番の制約条件は、針を回転させるために必要なモーターの消費電力にあった。アナログクオーツ時計は、モーターで消費される電力を減らすために、ごく微小な電流で動作する時計用のモーターを使用する。ではそのモーターを改善すればよいではないか。クオーツ時計は電子部品によって構成される。その電子部品を改善すればよいのである。これはその電子部品の製造者なら誰でも考えることで、実際、アナログクオーツ時計のムーブメントのトルクは大きく改善されている。 有名なところではグラントセイコーの9Fムーブメントは通常のクオーツの倍のトルクで駆動できると謳っている。それ以外の広く汎用で使われるムーブメントにおいても、例えばMiyotaのクオーツクロノグラフムーブメントは 1uN・m の分針を駆動できる。クロノグラフ秒針にいたっては 0.4uN・m である。同じくMiyotaの傑作ムーブメント 9015と比較してもそれなりのトルクになってきている。最早,すくなくとも一般的にクオーツのトルクが小さいとは言えなくなってきているのではないだろうか。

機械式時計はなぜ動くのか その8

一般に大きい、小さいという場合、その比較対象が必要になる。機械式時計のトルクが大きい、という場合は、その比較対象はアナログクオーツ時計になるであろう。世の中にアナログクオーツ時計がなかった時代、機械式時計のトルクが大きいという議論はそもそも成立する要件がなかったに違いない。そこで、アナログクオーツ時計のトルクが小さいということについて考えたい。 一体、アナログクオーツ時計は、なぜトルクが小さいのだろうか。原理的には発振周波数が高く3.2万Hz(一秒間に3万回以上発振する)以上である。これを減速するのであるからトルクは問題ないではないか。その通りである。もし、アナログクオーツ時計の原発振周波数を歯車で伝達するのであればそれはそれで問題はないはずである。ところが、クオーツ時計の場合、伝達機構が異なる。電気信号でこの減速比は伝達されるのである。電気信号による伝達の場合、増速も減速も関係はない。 機械式時計の場合、トルクはその動作の本質である。テンプとテンプに至る歯車を主ゼンマイから回転させるためにはトルクが必要だ。一方でクオーツ時計の本質は電子回路である。歯車は本来必要はなく、バッテリーと電子回路があればよく、その表示形態は自由である。液晶でLEDでもアナログの時分針表示でも好きなものを選ぶことができる。針を回転させることは、できなくはないが必須ではない。つまり、トルクは、クオーツ時計の本質ではないのだ。 ではなぜアナログクオーツ時計で、回転運動させた場合に、得られるトルクが小さいのか。それはクオーツ時計の本質である電子回路の動力源であるバッテリーという制約条件による。バッテリーによって回転運動をさせる場合、その動力源はモーターになる。そしてモーターに流せる電流が大きければ大きいほどトルクを大きくとることができる。ところが電流を流すと、当然ながらバッテリーの消費は早くなる。つまり、ここがクオーツ腕時計の一番大きな制約条件、バッテリーの容量になる。限られた電池容量で2、3年も持たせようと思えば、やはりモーターに使える電流は小さくなる。例えば電池が一週間しか持たないアナログクオーツ時計でよければ、モーターに流せる電流は40~50倍は大きくできるだろうから、太い針を駆動するトルクを得ることは原理的には可能であるはずだ。

機械式時計はなぜ動くのか? その5

では、いよいよ機械式時計の仕組みに行きたいと思います。これが私の思う機械式時計のモデルです。クオーツと比較して、仕組みが複雑になっているのが図からも分かるかもしれません。 この歯車の比は、時計三昧さんのウェブページを参考にさせていただいております。いつもどうもありがとうございます。 クオーツ時計と大きく違うところは以下の三点になるかと思います。 動力源が一体になっている。クオーツの場合は、電池という動力源が、振動数を変換する電子回路を駆動していました。機械式時計の動力源は、香箱のゼンマイです。クオーツ時計と違い、その駆動力は振動数を変化させると同時にダイレクトに歯車で次の歯車を駆動します。 クオーツと違い「増速」になっている。クオーツの場合は、もとが32768Hzという非常に速い振動を遅くすることで、秒針、分針、時針を作っていました。一方機械式時計では、遅い香箱の回転から、分針、秒針を作ります。 フィードバックループが形成されている。クオーツの場合は、元の速い発振周波数を単純に分割することで所望の時間単位を作ります。一方、ゼンマイ時計の場合は、テンプの速度にあわせて、ゼンマイの解ける速度を調整します。一番最後の三角印の部分ですね。テンプの速度にあわせて、ガンギ車の速度が調整されます。 機械式時計は、動力源と速度調整を一体で行う仕組みを採用しているがために、設計者からうすると、ここが最大の制約条件であり、面白味でもあるんじゃないでしょうか。

機械式時計はなぜ動くのか?その4

寒い日々が続きますが、みなさまいかがお過ごしでしょうか。私は寒さは嫌いですが、冬は汗や水分にあまり気を使わなくよくなって、使う時計の選択肢が増えますので、その意味では好きな季節です。 前回、クオーツ時計は簡単だと散々書きました。では、どのように簡単なのでしょうか。一番簡単な理由は、その仕組みにあります。クオーツ時計は基本的に電池で動きます。電池で動く、よく聞きますが、では「動く」っていったいどういうことでしょう。 電池で動くっていうことは、電池の力を使って、何かを動かすわけです。クオーツ時計の場合、その何かとは何か。一つは電子回路です。電池で回路を動かして所望の機能を達成するわけです。 簡略図で書いてみるとこのような感じです。電池の力ですべての回路を動かします。まずは、32768Hzを作る水晶発振器。これが全部の元です。それを半分にして、もう一回半分にして、、、とこれを15回続けると、1秒ができます。1秒ができればそれを1/60にします。そうすると1分ができて、さらに1/60にすると1時間ができます。 なお、電池というのは、かなりユニバーサルな動力源で相当便利に使えます。この図に書いているのは、電子回路に関連する部分だけですが、電池は、他にも回路だけではなく、針を駆動するモーターなども動かします。 さて、ここで重要なのは、クオーツ時計の場合、その機能(回路)と動力源(電池)は別々になっているということです。ユニバーサルな動力源を使うことで、電池さえあれば、動力源に関する心配がまったくいらない、これは実に革命的なことでした。もっともそのため、泣き所は電池寿命ということになります。大容量の電池はサイズの制約で搭載できませんから、クオーツ時計は、電子回路の中では最も消費電力に気を使ったエコなシステムになっています。

機械式時計はなぜ動くのか? その1

今日から新シリーズを起してみます。まだまだ私には今一つ機械式時計の動く仕組みというのがよく分かっていないような気がしているのです。現在のゼンマイ式時計の仕組みは、ほぼ18世紀中頃に確立された仕組みと同じです。250年以上の前も仕組みなわけですが、これをうまく調整すれば一日+-5,6秒という驚異的な精度を叩き出します。この精度はちょっと良すぎではないでしょうか。 クオーツは32KHz、一秒間に32000振動もするから、機械式時計よりも圧倒的に精度がいい、とモノの書籍にはよく書いてあります。通常のクオーツ時計の精度は月に10〜20秒程度の誤差です。一方で機械式時計はハイビートと呼ばれるものでも10振動=5Hzでしかありません(時計の世界では、振動数という定義が少し違っています)。ところで、32KHzと 5Hz、6400倍もの差がありながら、クオーツおよび機械式時計の精度の差はおおよそ数十倍程度です。クオーツが悪いというより、機械式時計のほうが古い仕組みにも関わらず、どうも良すぎではないでしょうか? また薄い時計と厚い時計、時刻あわせの時の針飛びについても言及してきました。この使い勝手に大きく影響してくるのが、いわゆる二番車の配置なのですが、これを説明するためには、機械式時計の仕組みにもう少し言及したほうが分かりやすいようでもあります。 画像は1968年の手巻きスピードマスターとキャタピラブレス。キャタピラブレスと言われるものは、いわゆる巻きブレスと言われるタイプのブレスの一つです。無垢ではなく、板を曲げて作ってありますので、軽いです。軽いのはいいのですが、手巻きとはいえ時計本体が重いクロノグラフには、すこし華奢な感じも受けます。ゆるくブレスを巻くのがお好みの方には、ヘッドが時々つられるような感じを受けるでしょう。ただ個人的にはスピードマスタープロフェッショナルを一番格好よく見せるブレスと思っています。

機械式時計のどこがいいのか? その30

腕時計の針飛びについて、もう少し考えてみます。これは実はけっこう面白い話題かもしれません。まず、一口に腕時計といいますが、おおよそ大別して次の三つの流れがあるように思えます。 貴族が使っていた、高級宝飾品としての系譜。 実用時計としての系譜。腕時計が初めて使われたのはイギリスのボーア戦争だと言われています。正確な時間を知るというのは軍隊では生死にかかわる重大時です。当時は一般の兵士にまでは時計はいき渡らず、時計を所持していたのは士官のみでした。 汎用品(コモディティ)としての系譜。クオーツ登場以降、腕時計のコストが革命的に下落してからの系譜。使い捨てをしたほうが精度もコストもリーズナブルであるということで生まれたディスポーザルウォッチの系譜。 やはり時代とともに、「時を知る」という営みはコモディティとしてありふれたものになってきています。現代では正確な時を知るためには、時計ではなく携帯という方も多いことでしょう。かく書いている筆者も、電車のホームで、クオーツ時計の時間に自分の左腕の時計の時間をあわせたりしています。 ところで身の回りのどんな時計でも、「時刻をあわせる」、さほど頻繁ではないにしても、これは必須の作業です。その必須な作業をするときに針がジャンプしてしまう、これはなかなかストレスフルですよね。実用時計や汎用品(コモディディ)でこのような動作を起していたら、毎日使うのはちょっと辛くなるかもしれません。しかしその一方で高級品としての時計、毎日使うことを想定されていない時計の場合は、まあ我慢できるかもしれません。つまりは時計でいう高級時計、宝飾時計は、必ずしも実用的な価値に優先順位をつけて開発されているというわけではない場合があるということでもあります。針飛びという現象だけではなく、防水性能を見てみても、そのことは分かるかもしれません。

機械式時計のどこがいいのか? その12

機械式時計のどこがいいのか? その12 クオーツ時計は、機械式時計と比較してトルクが弱く、針のデザインに制約があるという話でした。トルクという量は、回転軸からの距離と重さを掛けたものになります。時計でいえば、針が長ければ長いほど、重ければ重いほど、運針には大きなトルクが必要になります。ミヨタのムーブ同士の比較では、分針の運針トルクに3倍以上の差がありました。0.1g以下の針で3倍というのはかなり大きな差です。昨今のわりと大きめのクオーツ時計の針が視認性を確保できる範囲で薄い針を使ってあり、またできるだけ短い針を使うようにデザインされているのが分かってきたような気がします。 画像は セイコーブライツのエグゼクティブ電波ソーラーとアナンタのメカニカルクロノグラフです。クオーツの視認性も悪くはないものの、やはり針の存在感の違いは歴然としています。 ところで、トルクが弱いことは悪いことばかりではありません。機械式時計は、トルクが強いそのために機械の摩耗が激しく、またとくに摩耗する箇所にはその対策のためのルビー(石)が必要になります。定期的なオーバーホールは必須です。一方、弱いトルクで少ない部品を駆動するクオーツは、オーバーホールしなくても電池交換のみで10年使えているという例も少なくありません。 時折、機械式時計は電池を使わないからエコだという言い方をされます。しかし、これは機械式時計がきちんとメンテナンスされていることが前提です。メンテされていない機械式時計は、ただの鉄のかたまりです。電池さえ交換すれば使い続けられるクオーツ時計とどちらがエコか、きちんとメンテナンスすることを前提にしないと、いちがいには言えないような気もしてきます。

« Older posts

© 2025 Wristwatchな世界 — Powered by WordPress

Theme by Anders NorenUp ↑

Exit mobile version