Wristwatchな世界

腕時計とそれを取りまく世界 Since Apr 2012

Page 6 of 13

ナイジェリア詐欺・追記

  最近インターネットの振込詐欺が増えているとニュースでは喧しい。いわゆる最近の一般的な「インターネット」、ブラウザによってアクセスできる「インターネット」は、1993年のNCSA Mosaicを起源とすべきであろう。より一般的には1997年に安定版日本語版が出てきたWindows95を起源としても、日本でも、もう20年の歴史がある。 当初は研究者のみのネットワークであったインターネットが一般に開放されてから、ずっと詐欺の問題はあった。2012年前に私はこのブログサイトにナイジェリア詐欺について記事を書いている。最近ではみながスマートフォンを持ち、みなが意識せずにインターネットの世界に接続するようになった。そこで、よりいっそう詐欺の規模、巻き込まれる範囲の人々も増えてきた。そこで、インターネットの黎明期からずっとこの世界に携っている一人として、注意換気の意味も含めて簡単なチェックリストをまとめておこうと思う。 ウェブページの内容を確認する。詐欺サイトは世界中にある。日本にもあるが、ブランドのスーパーコピー品などの場合はその原産国、例えば中国の場合も多い。こうした場合、どうしてもウェブページの内容の日本語訳がおかしい場合がある。ブランド品を扱っている商店でウェブの内容が変な場合はやはり ? であろう。 ショップの情報を必ず確認する。 情報を明記するのは日本の法律で定められている。ない場合は論外だが、あったとしてもメールアドレスがyahooやgmail などのフリーメールであったり、電話番号が携帯の番号だったりした場合には要注意であろう。 できればショップに電話をする。 きちんとしたショップであれば、平日9-5時は対応してくれるはずである。できればそのショップに行ってみるのがいいが、行けない場合は電話してみる。 かならず返品、交換条件を確認する。 価格が適正かどうか確認する。正規の値段と比べて適正かどうか。あまりに安い場合はやはりおかしい。最近ではオークションもあるし、質屋もある。オークションや質屋に持っていけばそれより高く売れるはずなのに値段が安い場合、その業者には、その値段でしか売れない訳があると思うべきである。 詐欺という犯罪の歴史は古い。日本という国に住んでいると分からないが、世界中の他のほとんどすべての国からみると、日本という国はお金持ちの国に見えている。日本は、世界の詐欺サイトのかっこうの標的になっているということを自覚するのがよいかもしれない。 下の図が世界最初のウェブブラウザ、NCSA Mosaic である。1993年当時、大学の研究室のワークステーションの前にいながらにして、 米国やヨーロッパの情報が手元で表示されるということに、ものすごく衝撃をうけたものだった。

機械式時計はなぜ動くのか その7

今回はトルクの重要性についてです。機械式時計はトルクがあるために大きな針を回すことができるということは聞かれたことがあるでしょう。トルクは重要そうだなぁとは思っても、しかしながら、ではその重要なトルクがあればあるほど高級というわけでもなく、どちらかというと高級時計の中には、ロイヤルオークジャンボなどのように比較的トルクが小さいものも多い。しかしながら、それら高級機の中ではロイヤルオークジャンボのトルクは大きいほうである、などと聞いてくると分けが分からなくなってきます。 そもそもトルクというファクターは、なぜ機械式時計で重要なのか。それは機械式時計がゼンマイで動作し、その動作を歯車で増速して伝えるからこそ、重要になってくるのです。ここに以下の点でトレードオフが出てきます。 ゼンマイの長さと動作時間: ゼンマイが解けていきながら動作する以上、ゼンマイの長さによる動作時間の制限がかならずあります。長く動作させたい場合には、トルクは小さくなります。 トルクの大きさ自体の制約: ゼンマイから見ると、ギア比はかならず増速になります。増速の場合、伝えられるトルクは原理的にそこで減少します。車の場合、ギア比がLの場合はトルクが大きいですが、5速、6速の場合はトルクは小さくなります。ギア比を増速すればするほどトルクは小さくなるのです。車の場合はもともとかなり回転数の高いものを減速して巨大な車体を動作させるトルクを得るのですが、時計の場合はもともと一番遅いゼンマイの回転数から増速して脱進機の速度にしていくので、必ず主ゼンマイのトルクから減少します。 精度と脱進機の速度: 高精度を求めれば求めるほど、脱進機の速度は上がる傾向にあります。ヴィンテージ時計は5.5振動または6振動、近年では多くの時計が8振動。場合によっては10振動というものまであります。脱進機の速度を上げれば精度を得やすくなりますが、その分増速の度合いも増えますので、トルクもより必要になります。 結局、ゼンマイをできるだけ消費せずに、しかも大きな針を動作させたい場合はゼンマイを格納する箱が大きくなってしまいます。そうなってしまってはとくにドレスウォッチに代表とされる高級時計とはいえなくなってしまいます。 そこで、限られた体積に含まれるゼンマイのトルクを有効活用するために、伝達ロスをできるだけ減らすために、高級時計の歯車は丁寧に磨いてありますし、ゼンマイの体積とトルクによって動作できる針および機能のバランスを巧みにとってあるのです。

機械式時計のどこがいいのか その35

若い時期の一時期、年齢を経てからでは絶対に不可能な仕事を達成することがある。ジェラルド・ジェンタにおけるロイヤルオークもその一つかもしれない。 ジェンタが秀逸なことは、その特許を読めば分かる。ジェンタは、どうやら自分のやっている進行中の仕事のその価値が分かっていたらしい。自分の行った仕事の価値を自分で理解してそれを文章にする。これは簡単に見えるが、実はそう簡単な作業ではない。新規性を産み出した人間が、自分で自分の産み出した価値をアピールするのは実は非常にバランスを必要とする、繊細な作業なのだ。 まずたいていの人は、まさに作業しているその新しい仕事に集中して時間をかければかけるほど、その仕事そのものが自分にとってはルーチンの仕事になってしまい、どこに新規性があったのか分からなくなってくる。そうならないためには他者の仕事を広く知ってつねに意識しておく必要がある。 その一方で新規性を産み出すためには、他者の仕事を知りすぎないということも必要になる。他者の仕事を知れば知るほど、自分の中ではそれが当たり前になってしまい、そうなってしまうとブレイクスルーの必要性も失われてしまう。ブレイクスルーするためには、他者の仕事を知りつつも、「ここが不便だ。ここがおかしい。自分だったらこうする」という強烈な意識を保つ必要がある。その意識を保つためには、年齢的には気力がみなぎっている若いほうが有利であろうし、その意識を保つために、あえて知らないということも場合によっては必要になってくる。 ジェンタの秀逸なところは、そこで微塵もブレていないところである。自分の仕事の価値はここにある。世の中にある新しい仕事はここにあると書いている。若いとはいえ、当時から広くいろんな仕事を見ていたのであろう。 ジェンタが残したロイヤルオーク。ジェンタが予見した通り、現代でも、このデザインはいささかも古びていない。当時としては破格な39mmという大きさ、加えてドレスなみの7mmという野心的な薄さ、さらに防水のためにテンションリングに頼らないワンピースケース、そのために採用になった伝説的なキャリバー2121。文字盤のタペストリーダイヤルに、極限までつめた針と文字盤のクリアランス。いささかの妥協も許さないそのデザイン、これこそが若さであると思う。これからの時代を自分が拓くという気概に満ちている。いつまでたっても古びない、若い時計。それがロイヤルオークなのかもしれない。  

機械式時計はなぜ動くのか? その6

さて、クオーツ時計と機械式時計とで、大きな違いがあることは分かりました。では、その違いをより詳しく見ていくことにしましょう。クオーツ時計と機械式時計、一番の大きな違いは、動力源にあります。すべてのモノが機能する、動くためにはそれに相当するエネルギーが必要です。クオーツ時計の場合、電気エネルギーという極めてユニバーサルな動力源を使用します。そのため、動力源と機能ブロックとは完全に分離できます。もし壁のコンセントからエネルギーを取得できるのであれば、クオーツ時計は動力源の問題はほとんどなくなり、ほぼ無制限に動きつづけることができることになりますし、どんな大きな針も駆動できることになります。これは動力源と機能が分離できるからです。 一方で、機械式時計はゼンマイを動力とします。ゼンマイというものはユニバーサルな動力源の一つではありますが、電気ほどユニバーサルではなく、機械式時計では、動力源と機能とが未分化です。つまり、ゼンマイで歯車を駆動し、歯車の歯の数の比で、所望の周波数を生成します。材質が同じであれば、厚くて幅広のゼンマイであればあるほど、大きな歯車や針を駆動できます。その一方で、ゼンマイの長さは駆動時間に直接かかわってきます。ゼンマイをおさめる箱の体積の問題がありますので、厚くて幅広のゼンマイは、短かい駆動時間となります。一方で、薄くて幅が狭いゼンマイは長寿命ではありますが、より小さな歯車、または軽い針しか駆動できないことになります。 機械式時計の設計はまずこの部分をどう最適化するかということに関ってきます。一般的に高級時計は、薄型です。外形寸法が薄いということは、薄いゼンマイを使わなければならず、結果的に比較的弱いトルクになり、より小さい針しか駆動できないことになります。そのため、歯車の歯をきちんと磨くことで、トルクのロスを極力減らすといった努力が高級時計にはなされることになります。 画像はロイヤルオークジャンボ。薄型自動巻の最高峰の機械を内蔵します。

機械式時計はなぜ動くのか? その5

では、いよいよ機械式時計の仕組みに行きたいと思います。これが私の思う機械式時計のモデルです。クオーツと比較して、仕組みが複雑になっているのが図からも分かるかもしれません。 この歯車の比は、時計三昧さんのウェブページを参考にさせていただいております。いつもどうもありがとうございます。 クオーツ時計と大きく違うところは以下の三点になるかと思います。 動力源が一体になっている。クオーツの場合は、電池という動力源が、振動数を変換する電子回路を駆動していました。機械式時計の動力源は、香箱のゼンマイです。クオーツ時計と違い、その駆動力は振動数を変化させると同時にダイレクトに歯車で次の歯車を駆動します。 クオーツと違い「増速」になっている。クオーツの場合は、もとが32768Hzという非常に速い振動を遅くすることで、秒針、分針、時針を作っていました。一方機械式時計では、遅い香箱の回転から、分針、秒針を作ります。 フィードバックループが形成されている。クオーツの場合は、元の速い発振周波数を単純に分割することで所望の時間単位を作ります。一方、ゼンマイ時計の場合は、テンプの速度にあわせて、ゼンマイの解ける速度を調整します。一番最後の三角印の部分ですね。テンプの速度にあわせて、ガンギ車の速度が調整されます。 機械式時計は、動力源と速度調整を一体で行う仕組みを採用しているがために、設計者からうすると、ここが最大の制約条件であり、面白味でもあるんじゃないでしょうか。

機械式時計はなぜ動くのか?その4

寒い日々が続きますが、みなさまいかがお過ごしでしょうか。私は寒さは嫌いですが、冬は汗や水分にあまり気を使わなくよくなって、使う時計の選択肢が増えますので、その意味では好きな季節です。 前回、クオーツ時計は簡単だと散々書きました。では、どのように簡単なのでしょうか。一番簡単な理由は、その仕組みにあります。クオーツ時計は基本的に電池で動きます。電池で動く、よく聞きますが、では「動く」っていったいどういうことでしょう。 電池で動くっていうことは、電池の力を使って、何かを動かすわけです。クオーツ時計の場合、その何かとは何か。一つは電子回路です。電池で回路を動かして所望の機能を達成するわけです。 簡略図で書いてみるとこのような感じです。電池の力ですべての回路を動かします。まずは、32768Hzを作る水晶発振器。これが全部の元です。それを半分にして、もう一回半分にして、、、とこれを15回続けると、1秒ができます。1秒ができればそれを1/60にします。そうすると1分ができて、さらに1/60にすると1時間ができます。 なお、電池というのは、かなりユニバーサルな動力源で相当便利に使えます。この図に書いているのは、電子回路に関連する部分だけですが、電池は、他にも回路だけではなく、針を駆動するモーターなども動かします。 さて、ここで重要なのは、クオーツ時計の場合、その機能(回路)と動力源(電池)は別々になっているということです。ユニバーサルな動力源を使うことで、電池さえあれば、動力源に関する心配がまったくいらない、これは実に革命的なことでした。もっともそのため、泣き所は電池寿命ということになります。大容量の電池はサイズの制約で搭載できませんから、クオーツ時計は、電子回路の中では最も消費電力に気を使ったエコなシステムになっています。

機械式時計はなぜ動くのか? その3

表紙の写真を替えてみました。背景はクロノス誌。時計はオーデマピゲ VZSSc です。VZSSc は、クロノメータ規格のムーブメントを使った、かつてのオーデマピゲ渾身のドレスウォッチです。パテックの96をキングとすると、このVZSSはクィーンと個人的には思っています。 さてさて、調子に乗って参りましょう。 理系の大学一年生といって恐れることはありません。もっとも、私らのころと違って最近の大学生はまじめに授業に出席するようですから、我々のころよりも遥かにレベルが上がっているかもしれませんが、まあそのようなレベルの話をしたいというだけで、数式はできるだけ使わないつもりですのでご安心ください。 まずは腕時計の動く仕組みの私なりの解釈です。基準として、ありふれたクォーツ時計を例にします。クォーツ時計はごく簡単です。クォーツ時計はどうやって一秒を作るのでしょう?元になるのは、水晶です。この水晶(クォーツ)が32KHzの基準周波数で発振します。32KHzとよく言われますが、実は32768Hzです。一秒間に32768回、振動します。振動というのは「波」とよく言われます。ただ、波と言われる場合は、振動が一定方向に進む場合です。ある一定箇所で、振動する場合は、回転という形になります。たとえば、一秒間に自転車を32768回漕ぐのも、32768振動といってここでは差し支えないことにします。時計のヒゲゼンマイも振動、といわれますよね。 なぜ簡単なのか。水晶は電気を与えるとある一定振動で発振するからです。この場合一秒間に32768回振動しますが、それを32768回数えることができれば、それが一秒ですよね。一秒ができればあとはしめたものです。それを60回数えたら一分、一分を60回数えると一時間です。つまり、32768を数える機械と、60を数える機械が二つあれば時計はできてしまいます。もちろんあとは表示とかケースとかいろいろ必要ですが、それは必要に応じてなんとでもなるとすれば、心臓部は以下の4つでできてしまいます。 1. 水晶 2. 水晶に与える電圧 3. 32678を数える機械 4. 60を数える機械 x 2 どうです。簡単でしょう。これ、めっちゃ簡単ですので、その気になれば、秋葉原でも日本橋でもキットを組みたてることも可能ですから、ぜひお試しいただければと思います。部品屋さんで、32KHz発振のクリスタルください、と言えば、一個30円程度で入手できます。

機械式時計はなぜ動くのか? その2

お久しぶりです。 昨年は転職したり引越したりその他もろもろありまして、ブログも休載状態になってしまっておりました。ぼちぼちと再開していければと思いますので、今後ともどうぞよろしくお願いいたします。 ではでは気をとりなおして、機械式時計はなぜ動くのか、その2に行きたいと思います。世の中に機械式時計の仕組みを解説しているブログは数あります。すばらしいブログも多いと思いますし、筆者もかなり参考にさせていただいております。いつもどうもありがとうございます。 まず、なぜわざわざ、それでもなおかつ屋上に屋根を架す気になったのか、それはですね。機械の機構解説の書籍、ウェブはめっちゃあります。ただ、機械式腕時計はなぜこんなに正確なのか、そういう観点から書いている資料ってあまりないと思うのです。 まあそれはそうかもしれません。制御理論が確立するはるか以前から時計に関する技術書は著されているのですから。現代のいわゆる機械式時計の仕組みとして重要なヒゲゼンマイの発明は17世紀にホイヘンスによってなされたと言われています。これは、かれこれ400年以上前の出来事です。つまりは、時計のメカニズムとしての発達は、他の産業と比較して非常にゆっくりで、堅実なものです。しかしその一方で、それをとりまく環境、例えば航空機や携帯電話、制御に関する理論などは飛躍的な進歩を遂げました。 せっかく現代に住んでいる我々ですから、理系の大学一年生程度が分かる程度の制御理論を使って時計の動作を解説してみたいと思うのです。さあて、私にできるのでしょうか。まあ間違いを恐れずに!頑張っていきたいと思います。

機械式時計はなぜ動くのか? その1

今日から新シリーズを起してみます。まだまだ私には今一つ機械式時計の動く仕組みというのがよく分かっていないような気がしているのです。現在のゼンマイ式時計の仕組みは、ほぼ18世紀中頃に確立された仕組みと同じです。250年以上の前も仕組みなわけですが、これをうまく調整すれば一日+-5,6秒という驚異的な精度を叩き出します。この精度はちょっと良すぎではないでしょうか。 クオーツは32KHz、一秒間に32000振動もするから、機械式時計よりも圧倒的に精度がいい、とモノの書籍にはよく書いてあります。通常のクオーツ時計の精度は月に10〜20秒程度の誤差です。一方で機械式時計はハイビートと呼ばれるものでも10振動=5Hzでしかありません(時計の世界では、振動数という定義が少し違っています)。ところで、32KHzと 5Hz、6400倍もの差がありながら、クオーツおよび機械式時計の精度の差はおおよそ数十倍程度です。クオーツが悪いというより、機械式時計のほうが古い仕組みにも関わらず、どうも良すぎではないでしょうか? また薄い時計と厚い時計、時刻あわせの時の針飛びについても言及してきました。この使い勝手に大きく影響してくるのが、いわゆる二番車の配置なのですが、これを説明するためには、機械式時計の仕組みにもう少し言及したほうが分かりやすいようでもあります。 画像は1968年の手巻きスピードマスターとキャタピラブレス。キャタピラブレスと言われるものは、いわゆる巻きブレスと言われるタイプのブレスの一つです。無垢ではなく、板を曲げて作ってありますので、軽いです。軽いのはいいのですが、手巻きとはいえ時計本体が重いクロノグラフには、すこし華奢な感じも受けます。ゆるくブレスを巻くのがお好みの方には、ヘッドが時々つられるような感じを受けるでしょう。ただ個人的にはスピードマスタープロフェッショナルを一番格好よく見せるブレスと思っています。

機械式時計のどこがいいのか? その34

やはり機械式時計は機械式なのです。ゼンマイで動力を与えて、歯車を複数動かし、そして、何らかの目的にあった形で時間を掲示するのです。その大きな流れが軍用とドレス用です。以下の写真はパネライルミノール47mmとオーデマピゲのヴィンテージ、VZSSc 36mm です。 果してどちらが高級時計に見えるでしょうか?もちろん、パネライルミノールもかなりな高級時計です。しかし、どちらかといえば、やはり高級に見えるのはドレス時計のオーデマピゲではないでしょうか? そもそもの目的が違うので、この二つを比べるのはすこし無理がありますが、パネライは、イタリア海軍の軍用時計をモチーフに頑丈さ、防水性、精度を追求しており、ラグジュアリースポーツという新しい系統に属します。これはそもそもはオーデマピゲのロイヤルオークによって開拓された分野で、パネライが現在先陣を切って開拓している分野といってもそうは間違っていないでしょう。 一方の名機の誉れ高いオーデマピゲのVZSScです。素晴しいムーブメントを搭載しており、仕上げはもちろん、精度も当時のクロノメーター級です。1950年代の時計ですが、現在でもかなりの高精度を維持しています。一方でお世辞にも頑丈とはいえません。また、防水性もほとんどありません。 やはりムーブメントが時計の形を決める部分はかなり大きいのです。パネライのムーブメントでは、ドレス時計を作るのは至難の技でしょうし、一方のAP VZSScは、間違っても数を量産できるムーブメントではありません。現代でもオーデマピゲAP2121など仕上げの卓越したムーブメントの量産数量は限られており、故障時の代替部品の迅速な供給が求められる軍用などのハードな用途に使う時計にはまず向いてはいないでしょう。

« Older posts Newer posts »

© 2025 Wristwatchな世界 — Powered by WordPress

Theme by Anders NorenUp ↑

Exit mobile version